Numerical analysis and a-posteriori error control for a new nonconforming linear finite element on quadrilaterals
نویسندگان
چکیده
Starting with a short introduction of the new nonconforming linear quadrilateral P̃1-finite element which has been recently proposed by Park ([13, 14]), we examine in detail the numerical behaviour of this element with special emphasis on the treatment of Dirichlet boundary conditions, efficient matrix assembly, solver aspects and the use as Stokes element in CFD. Furthermore, we compare the numerical characteristics of P̃1 with other low order finite elements. Moreover, we derive a dual weighted residual-based a-posteriori error estimation procedure in the sense of Becker and Rannacher (c.f. [2]) for P̃1. Several test examples show the efficiency and reliability of the proposed method for elliptic 2nd order problems.
منابع مشابه
Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals
After a short introduction of a new nonconforming linear finite element on quadrilaterals recently developed by Park, we derive a dual weighted residual-based a posteriori error estimator (in the sense of Becker and Rannacher) for this finite element. By computing a corresponding dual solution we estimate the error with respect to a given target error functional. The reliability and efficiency ...
متن کاملA posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles
The a posteriori error analysis of conforming finite element discretisations of the biharmonic problem for plates is well established, but nonconforming discretisations are more easy to implement in practice. The a posteriori error analysis for the Morley plate element appears very particular because two edge contributions from an integration by parts vanish simultaneously. This miracle does no...
متن کاملFramework for the A Posteriori Error Analysis of Nonconforming Finite Elements
This paper establishes a unified framework for the a posteriori error analysis of a large class of nonconforming finite element methods. The theory assures reliability and efficiency of explicit residual error estimates up to data oscillations under the conditions (H1)-(H2) and applies to several nonconforming finite elements: the Crouzeix-Raviart triangle element, the Han parallelogram element...
متن کاملA Stabilized Nonconforming Quadrilateral Finite Element Method for the Generalized Stokes Equations
In this paper, we study a local stabilized nonconforming finite element method for the generalized Stokes equations. This nonconforming method is based on two local Gauss integrals, and uses the equal order pairs of mixed finite elements on quadrilaterals. Optimal order error estimates are obtained for velocity and pressure. Numerical experiments performed agree with the theoretical results.
متن کاملResidual-based a posteriori error estimate for interface problems: Nonconforming linear elements
In this paper, we study a modified residual-based a posteriori error estimator for the nonconforming linear finite element approximation to the interface problem. The reliability of the estimator is analyzed by a new and direct approach without using the Helmholtz decomposition. It is proved that the estimator is reliable with constant independent of the jump of diffusion coefficients across th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003